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ABSTRACT

An analytic performance evaluation methodology of the Mid-Frequency Active

Classification Processor Continuous Wave (MFACP CW) phase 1 normalizer algorithm is

presented. This normalizer uses a recursive sutucture with an exponential filter for estimation of

the mean background level of the cell under investigation. The methodology allows the

determination of the expected value and variance of the normalizer mean estimate which are the

essential parameters of the probability of false alarm P(F) and detection P(D) expressions from
which the Receiver Operating Characteristic (ROC) curves can be computed. The signal

processing prior to the normalizer consists of a Fast Fourier Transform (FFT) with 75% overlap
windowed data (Rectangular or Hanning) and an envelope detector. The analytic expressions

derived are done specifically for 75% overlap but are general enough so that different

overlapping or windowing are applicable with minor modifications.
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1.0 - INTRODUCTION

This report provides a methodology for determining analytically the Receiver Operating

Characteristic (ROC) curves of the Mid-Frequency Active Classification Processor (MFACP)

Continuous Wave (CW) normalizer. The methodology is based on the determination of the

statistics of the normalizer estimate under stationary and non-stationary noise conditions.

The model assumes the averaging time of the normalizer is long enough so that the
probability density function of normalizer estimate g converges to a Gaussian form as a

consequence of the Central Limit Theorem. The dynamic noise background model described in

section 4.0 has a sinusoidal variation in the Rayleigh parameter of the envelope detected

narrowband Gaussian noise. This model of the shape of the background is quite general and in

reality the shape of the background variation could be arbitrarily specified as required as long as

the requirements given in 4.0 are met. Section 2.0 describes the false alarm and detection

probabilities for each test cell under investigation which leads to the generation of the ROC

curves. Section 3.0 develops the model for determining the mean and variance of the normalizer

estimate and section 4.0 describes the background noise model.

1-1
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2.0 - PERFORMANCE EVALUATION METHODOLOGY

The performance of each normalization algorithm is determined by evaluating the

Receiver Operating Characteristic (ROC) curves. These curves quantify the performance of the

algorithm as a function of Signal-to-Noise Ratio (SNR) and probability of detection, P(D), at

different probabilities of false alarm, P(F).

A fundamental requirement of a normalization algorithm is a Constant False Alarm Rate

output, CFAR. The MFACP maintains a constant detection threshold at every range point in the

detection process. The CFAR requirement is achieved when the noise background is stationary,

i.e., the statistics do not change with time. In non-stationary noise backgrounds with fixed

detection thresholds the single bin P(F) and P(D) is dynamic and therefore the CFAR

requirement is not met.
The test cell x is divided by the background mean level estimate V generating the

normalized output. Let X denote the detection threshold, Ho the hypothesis that the test cell x

contains noise only and H 1 the hypothesis that test cell x contains a target echo (signal plus
noise). (For notational convenience the time dependence for each successive test cell has been

dropped). The following test is carried out to determine a detection:

x . (2-1)
R.<

P(F) is the declaration that a true detection was made under hypothesis Ho, i.e., a detection is

erroneously declared since x contained noise only. P(D) is the declaration that a true detection
was made under hypothesis H1, i.e., a detection is correctly declared since x contains signal plus

noise. Under the noise only hypothesis H0 , the probability density function of the envelope of a

narrowband Gaussian process has a Rayleigh form given in [7] as

f(x I Ho) = X- exp( _2 u(x) (2-2)

u(x) is the unit step function. For a narrowband signal in narrowband noise, i.e. signal plus

noise hypothesis H 1, the probability density function of the test cell x is Rician and given by

f(x I H1) =x e- (x •-- o,- u(x) (2-3)
0 2 2&)O 2-

2- 1
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where 10 (.) is the modified Bessel function of order zero. The SNR in dB for the test cell x

containing a target echo is

SNR = 10 logl0 (A . (2-4)

It is assumed that the normalizer window size (averaging time) is large enough so that the
convergence property of the Central Limit Theorem holds and that a Gaussian model for the

normalizer estimate g is valid. The probability density function of the normalizer estimae R. is

[4-6]

f = 2F/2cYt/oR) U(W) (2-5)

where FG(-) is the cumulative distribution of the standard normal zero mean, unit variance form

and

M = E[p.]
S(2-6)

02 = var(R ).

P(F) and P(D) are also given in [4-6] as

P(F)= p > XIIHO

(1 2m 2 / F/,
eXPIa-- 1+x • 20• J 2 1 +, 2 ai / J (2-7)

1+X 2 /0-2  FG(mRt/(FR)

and

2- 2
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P(D) x Z(.- X1HJ

= fQ(A/a, .•/a) f,(gL) dg. (2-8)

S .w 1wQ(A/°', °UV2z, + m,)/

where Q(qo, qj) is the Marqum-Q function for arguments qo and q, defined by

Q(q0 , q1 ) = fl41exp(-(l 2 + q0) / 2) I0(qol) dl (2-9)

wn and zn are the Nh weights and zeros respectively associated with the Hermite polynomial

expansion and are well tabulated in [9] for Nh up to 20. The polynomial expansion up to Nh = 6

provides very high accuracy. The Rayleigh parameter o given in equations (2-7) and (2-8) is that

of the test cell under investigation.

The analytic determination of the time history of the normalizer output mean and

variance which are necessary in the determination of the ROC curves is given in section 3.0.

2- 3
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3.0 - MFACP/CW NORMALIZER FUNCTIONAL DESCRIPTION

Figure (3-1) is a block diagram of the signal processing prior to normalization. It consists

of (a) a windowing function which is either a rectangle or Hanning, (b) a Fast Fourier Transform

(FFT) with 75% overlap and (c) an envelope detector.

Figure (3-2) is a block diagram of the MFACP/CW normalizer. The mean level at each

range bin for a given doppler channel is estimated by an exponential filter. The min function

(minimum of two values) is used for large data outlier rejection so that the mean background

level estimate is not biased. The given clipping threshold • of 2.56 provides an optimal rate

limitation [2, 3] of 0.76 dB per FFT update.

The mean background level estimate in each doppler channel at time k, denoted by z(k),
is the sum of the scaled input at time k, i(k), and the scaled mean background level output at

time k-I, z(k-1). The input data to the exponential filter, i(k), is the minimum of the envelope

detected output at time k, x(k), and the mean background level estimate z(k-1). The exponential

filter recursively updates the mean background level estimate at each time sample k using the

clipped data at the output of the minimum function.

To further reduce the variance of the mean background level estimate, 5 doppler channels

are averaged before generating the final normalizer estimate. The average of the five doppler

channels, z'(k), is symmetric about the channel of interest; i.e. 2 adjacent channels on either side

of the channel of interest are used. To nullify the bias in the mean background estimate z'(k)

when the test cell of interest contains a target, a range gap symmetric about and centered on the

test cell is normally used. The MFACP/CW normalizer is one-sided (asymmetric.) and

implements the gap by normalizing the test cell with the mean background estimate delayed by 4

samples, z'(k-4).

In the analysis that follows the mean and variance of the output, z'(k), are generated. The

dynamic behavior of these two values determine the ROC curves at each range bin in

nonstationary noise environments.

3-1
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Figure (3-1) - Signal processing prior to normalization.

3.0.1 - MFACP/CW CORRELATION COEFFICIENTS

For overlapped FFT processing as shown in figure (3-1) above the correlation coefficients

between successive updates [1] is

p) W(n) W(n +=( - •N)
Qn N-1W 2 (n) (3-1)

Q• is the fractional overlap and W(n) is the window function. Figure (3-3) shows the sequencing

of the data through the FFT for 75% overlap. After 4 updates the new input sequence to the FFT

has no data points in common with the original input sequence.
For the four updates the fractional overlap 0 is 0.75, 0.5, 0.25 and 0 respectively for i =

1, 2, 3, 4. The correlation coefficient at the envelope detector output is given in [5, 6] as

P (i)/4 p2(i) r-,-[jH+(2k1) 2(
r(i) 4 - 1 4 ,n=O1 2n(n+1)! + (

where i = 1, 2, 3, 4 corresponds to the FFT update. The infinite sum in equation (3-2) may be

truncated to a small finite number, Nn, of terms producing great accuracy (Nn < 30). Table (3-

1) lists the correlation coefficients at the outputs of the FFT and envelope detector for both the

rectangular and Hanning windows. Figure (3-4) is a plot of the correlation coefficients

comparing both window types at the FFT and envelope detector outputs.

3-2
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update, i p ,rectangle r rectanige p, Hanning r,, Hanning

0 1.0 1.0 1.0 1.0

1 0.75 0.5361 0.6592 0.4098

2 0.50 0.2326 0.1667 0.0255

3 0.25 0.0574 0.0075 0.0001

4 0 0 0 0

Table (3- 1) - Correlation coefficients at output of FFT and envelope detector.

The noise background at the FFT output is assumed to be a zero mean Gaussian process, N(0,

02). At the output of the envelope detector the noise is a Rayleigh process [7] with Rayleigh

parameter c2 equal to the variance of the Gaussian noise. The density function for a Rayleigh

random variable is

x X2

p(x) = ex~& U(x) (3-3)

where u(x) is the unit step function. Figure (3-5) is an example plot of equation (3-3) for the

Rayleigh parameter 02 = 1. The mean and variance of a Rayleigh random variable x are

R. = ý-n-72 a

S= (2 - n /2)o2.

Ioriginal input segment

Q = 0.75 update 1

Q = 0.50 update 2

Q = 0.25 update 3

0 = 0 update 4

Figure (3-3) - Sequencing of data segments for 75% overlap FFT processing.
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21

0.8-

0.4,

0.2" ,.,.
, '-- -- ... ----. - _

0 1 2 3 4
update i

Figure (3-4) - Plot of the correlation coefficients of FFT update at the output of the overlapped FFT
(equation Al) and envelope detector (equation 3-2) for a rectangular and Hanning window as given
in table (3-1).

f(x)

0.8

0.6

0.4

0.2

0'
0 1 2 3 4

Figure (3-5) - Example plot of the Rayleigh density function of the samples at the output of the
envelope detector which are input to minimum function for Rayleigh parameter 02 =

3-5
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3.0.2 - EXPONENTIAL FILTER

The exponential filter [2, 3] output at time k (see figure (3-2)) denoted by z(k) is

z(k) cxx(k) + Pz(k-1) (3-4)

1 N
wherecx = + = -• andN=15.

N+1 N+1

Modifying z(k) to incorporate M+1 previous input values gives

z(k) = X_.a• i(k- i) + zM+lZ(k- M - 1). (3-5)

The mean of the exponential filter output z(k) denoted by az~(k) = E[z(k)] is

p.z(k) = E[z(k)] = aE[i(k)] + PiE[z(k-1)]

= agt(k) + Pgz(k-1) (3-6)

- __ E[i(k- i)] + PM+1E[z(k- M -1)].

The variance at the exponential filter output denoted by aoz (k) is given by

o =z(k) E[z 2 (k)] - E[z(k)] 2  (37)

= a 2aý(k) + p202 (k -1) + 24 cov(x(k), z(k -1)).

The covariance between the present input x(k) and the previous output z(k-1), denoted by

cov(x(k), z(k-l)) in equation (3-7), is by definition [8]

cov(i(k),z(k - 1)) = E[i(k) z(k - 1)] - E[i(k)] E(z(k - 1)].

Substituting the relationship given in equation (3-5) for the previous M+1 input values the

covariance expression becomes

3-6
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cov(i(k), z(k - 1)) =a (E[i(k)i(k - I - i)] - E[i(k)] E[i(k - 1 - i)])

(3-8)M i==aX"io[ r(i) a•(k) ai(k -1- i)

where also by definition [8]

cov(i(k), i(k - 1 - i)) = r(i) a.(k) o.(k - 1 - i)

was used. Substituting equation (3-8) back into (3-7) and the fact that the correlation coefficient
r(i) goes to zero after M + 1 = 4 updates the exponential filter output variance becomes

cT2(k) = a'2u2(k)+ 2orz(k-1) + 2a2XM+l' iai(k)ci(k-i)r(i). (3-9)

Equations (3-6) and (3-9) are general expressior..- "-,,ig the recursive relationship for the mean
and variance of the exponential filter output in either stationary or non-stationary noise
backgrounds. If the filter is operating in a stationary noise field, the filter goes to steady state
and the output mean and variance becomes

gz(k) = Rrt(k) =tq

2 XM+i• 2 (3-10)UZ (k) = 212_P21 + 2 i=1 [3rOi))= CFZ.

To reduce the variance of the exponential filter output 5 doppler channels are averaged. The
variance is thus reduced to, by assuming the 5 doppler channels are independent and identically

distributed,

2 02o;Z,(k) = z(k)/5. (3-11)

The input test cell under investigation is divided by the mean estimate delayed by 4 samples
producing the normalized output

y(k) = '(k) (3-12)
z3(k-4)

3- 7
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3.0.3 - MFACP/CW MINIMUM FUNCTION

The minimum function chooses the smaller of the Rayleigh output from the envelope
detector at time k and the scaled output of the exponential filter at time k-1. This function

essentially shears (clips) the data to eliminate large data outliers from corrupting the mean level

estimate and provides a rate limitation of 0.76 dB per FFT update [2, 3]. The density function of

a clipped Rayleigh random variable is

pi(i) = o-- (•j[u(i) - u(i-%,,)] + e 8(i-A.,) (3-13)

where 8(i - X,) is the unit impulse function located at i = 'M. The amplitude of the delta

function is the probability of the Rayleigh random variable exceeding the clipping threshold.

The mean and variance of the clipped Rayleigh random variable are given by

] =Eff.] a erf %- ri- (.12J (T k
-~ ~ ~ X -)j- ~) 42

E[i 2] = 2a2 1 - (e (3-14)

o2. = E[i 2 ] - E[i•]

erf(,) is the standard error function defined in [9] as

eff(,) = ' Jexp(-V2) dW. (3-15)

A plot of the clipped Rayleigh density function specified by equation (3-13) is shown in figure

(3-5) for 02 = 1 and X. = 2. The height of the delta function is equal to the probability of the

Rayleigh random variable x > A•c.

3.0.4 - MFACP/CW EXPONENTIAL FILTER OUTPUT NOISE MODEL

The exponential filter output mean and variance is determined by combining the results

from 3.0.2 and 3.0.3. To determine the mean and variance of the exponential

3-8
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11

0.8

0.6-

0.4

0.2
delta function

r 4 amplitude =e 2

0 1 2 3 4
X

C

Figure (3-6) - Example plot of the density function of the clipped Rayleigh random variables at the
output of the minimum function for Rayleigh parametero2 = I and k = 2. The amplitude of the
delta function is equal to the probability of the Rayleigh random variable x > •.

filter output the algorithm as shown in figure (3-2) is combined with equations (3-6, 3-9) and (3-

14). This model results in the following expressions for the mean and variance of the

exponential filter output at eachtime k:

gz(k)= a min(gx (k), 2.56gz (k - 1)) + P gz (k - 1) (3-16)
= m 9

7ji(k) = 202(k) 1 - e4 '(2 "561,(2 1))2

{ -(3-17)

S- (32x(k) Ierff 2.56gz(k - 1)1
(29) ( ( V-2 ax(k) )

~z((k) (aa,(k))2 + (PGz(k-1))2 + 2CX2 l1 P ai(k)ao(k--i)r(.)

(Y2

3- 9
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3.0.5 - F 7FECTIVE AVERAGING TIME

The effective normalizer averaging time is determined as the number of independent

samples that go into the computation of the mean estimate for random error reduction. For
stationary noise with a = 1 the mean and variance of the clipped Rayleigh random variable using

equation (3-14) evaluates to

i = E[i] = V (2 . = 1.25163
(3-19)

CF1= 2(1-eP -2.56 2(nr/2)) - 1.25163 2 = 0.42178.
X2

Substituting now into equation (3-10) gives the variance of the estimate before doppler averaging

as

a2 0.42178 0.42178z= 31(1.81336) = 17 (3-20)31 17

The effective averaging time of the recursive structure of the normalizer is determined by

comparing to an equivalent window structure as would occur in a split window scheme. Looking

at equation (3-11) the equivalent length of the split window block averager is given by

2_ = (1-_ 2 )NDO•,,ER (31X5)
NIID a 2 (1 + 2== r(i)) = -85 (3-21)M+ i - 1.81336

where NDOppLM is the number of Doppler channels averaged. Therfeore by averaging the 5

doppler channels the effective averaging time is increased from NID = 17 to 85 samples.

3-10
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4.0 - BACKGROUND NOISE MODEL

The noise nonstationarity considered here [5] allows for an arbitrary positive sample-to-
sample variation in the Rayleigh parameter Ck. The mean of the single noise cell varies from

sample-to-sample as

1% = E[xk] = NfX/2 k (4-1)

This type of nonstationarity corresponds to a sample-to-sample change in the total noise power
without necessarily a variation in the power spectrum with frequency. The latter nonstationarity,

involving a spectral shape change without a total power change, does not affect the first order

statistic, E[xk], but does affect the sample-to-sample covariance

vii = cov(xi,xj) = rij 1xa,.xj (4-2)

2where aoL is the variance of sample xk where k = i, j

2

0"2xo = (2 - r / 2) a? (4-3)

by changing the correlation coefficient, rij,

r= a1 ~Vii E[xixj] - E[xi]E[xj] (4-4)(Yxi axj oxi Oxj

this total power nonstationarity also affects v1j through ax1 and ax,. Thus, noise nonstationarity

is modeled by a total power nonstationarity affecting both mxi and vij, and a spectral shape

nonstationarity with frequency affecting only vij. In stationary noise backgrounds, the

correlation coefficients rij does not vary with time. In nonstationary noise, the Rayleigh
parameter ai change from sample-to-sample and the correlation coefficients may change as well.

In shallow water environments it has been observed in real data that the [6] background

variation is oscillatory in nature and can vary by as much as 20 dB in the space of a few seconds.

In convergence zone regions, the background may vary by as much as 15 to 20 db per second

and has a pedestal shape to the variation. The effects on normalizer performance is captured by

considering a generalized sinusoidal background variation model where both the amplitude and

period of the variation may be arbitrarily specified.

4- 1
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Let the variation in the Rayleigh parameter as a function of time be defined by

cy(t) = ao - amin sin(2n t / T) (4-5)

where d is the total power change in dB and T is the period of the sinusoid. Also let d be defined

by

d = 20 loglo (aOm / .m)in (4-6)

or

10d/20 = Cymax / Omin (4-7)

so that at the minimum and maximum points in the sinusoidal variation

ama = 7o - c, sin(37 / 2) =(70 +(7 (4-8)
crmin = O - a, sin(n / 2) = o - o1.

Equating equations (4-7) and (4-8) gives

10 d/20 = 00+01

COo -- 71

I10d/20 _-1 (4-9)

C = ld/20 + I )CF0

and finally the variation of the Rayleigh parameter for the sinusoid can be written as

(1 0 d/20° 1) _4)n

0(t) C o -x (4-10)

4-2
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